Submit | All submissions | Best solutions | Back to list |
ABCD - Colours A, B, C, D |
Consider a table with 2 rows and 2N columns (a total of 4N cells). Each cell of the first row is coloured by one of the colours A, B, C, D such that there are no two adjacent cells of the same colour. You have to colour the second row using colours A, B, C, D such that:
- There are exactly N cells of each colour (A, B, C and D) in the table.
- There are no two adjacent cells of the same colour. (Adjacent cells share a vertical or a horizontal side.)
It is guaranteed that the solution, not necessarily unique, will always exist.
Input
[a natural number N ≤ 50000]
[a string of 2N letters from the set {A, B, C, D}, representing the first row of the table]
Output
[a string of 2N letters from the set {A, B, C, D}, representing the second row of the table]
Example
Input: 1 CB Output: AD
Input: 2 ABAD Output: BCDC
Added by: | Adrian Satja Kurdija |
Date: | 2011-03-13 |
Time limit: | 0.300s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: ASM64 GOSU |
Resource: | inspired by a math puzzle |