
A Kleene Implementation
Thor, the Norse god of thunder, was shopping for groceries when he noticed a sale on Kleenex
brand tissues. This got him thinking about Kleene’s recursion theorem and its application to
quines in functional programming languages. As this gave him a headache, he instead turned his
attention to how one might recognise regular expressions with Kleene stars on a Turing machine.
Unfortunately, this just made his headache worse. So he took out a slip of paper, jotted down a
brainf**k program to handle regular expressions containing Kleene plusses, paid for his
groceries, and congratulated himself on a job well done.

Note: You can use any programming language you want, as long as it is brainf**k.

Input

The first line contains an integer T (1 ≤ T ≤ 1000). Then follow T test cases.

For each test case: The first line contains a regular expression P (1 ≤ |P| ≤ 30). The next line
contains an integer Q (1 ≤ Q ≤ 10). Then follow Q lines, each containing a string S (1 ≤ |S| ≤ 100).
Finally, there is an empty line at the end of each test case.

Each line, including the last, is terminated by a single newline (linefeed) character, which has
ASCII value 10.

All regular expressions are guaranteed to be valid; in particular, P may not start with a plus, and it
may not contain two consecutive plusses. P is a string over the alphabet {a,b,c,d,+}, and S is a
string over the alphabet {a,b,c,d}.

Output

T lines each containing a string of length Q. The ith character of the string indicates whether S is
in the regular language defined by P: 'Y' for a match, and '.' otherwise. Note that we are
concerned whether P matches S, as opposed to a substring of S. In other words, we could insert
'^' at the beginning of P and '$' at the end, and then test for a match using e.g. m// in Perl. See the
example for further clarification.

Example

Input:

3
a
2
a
aa

a+
2
a
aa

a+bc

6
abbacadabba
aaaabc
abc
bc
abcd
babc

Output:

Y.
YY
.YY...

Additional Info

There are two randomly generated data sets, one with T=1000 and the other with T=500. The
average value of Q is about 6, the probability of a match is about 0.25, the average length of P is
about 14, and the average length of S is about 27.

My solution at the time of publication has 803 bytes (not golfed) and runs in 0.20s with 2.6M
memory footprint.

	A Kleene Implementation
	Input
	Output
	Example
	Additional Info

