Continuous Fractions Again

A simple continuous fraction has the form:

$$a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{a_{1}}}}$$

$$\vdots + \frac{1}{a_{n}}$$

where the ai's are integer numbers.

The previous continuous fraction could be noted as [a1, a2, ..., an]. It is not difficult to show that any rational number p / q, with integers p > q > 0, can be represented in a unique way by a simple continuous fraction with n terms, such that p / q = [a1, a2, ..., an-1, 1], where n and the ai's are positive natural numbers.

Now given a simple continuous fraction, your task is to calculate a rational number which the continuous fraction most corresponds to it.

Input

Input for each case will consist of several lines. The first line is two integer m and n, which describe a char matrix, then followed m lines, each line cantain n chars. The char matrix describe a continuous fraction The continuous fraction is described by the following rules:

- Horizontal bars are formed by sequences of dashes '-'.
- The width of each horizontal bar is exactly equal to the width of the denominator under it.
- Blank characters should be printed using periods '.'
- The number on a fraction numerator must be printed center justified. That is, the number of spaces at either side must be same, if possible; in other case, one more space must be added at the right side.

The end of the input is indicated by a line containing 0 0.

Output

Output will consist of a series of cases, each one in a line corresponding to the input case. A line describing a case contains p and q, two integer numbers separated by a space, and you can assume that $10^20 > p > q > 0$.

Example

Input:	
9	17
	1
2	+
_	

....4.+.----....1..1.+.----.....15.+.-.....1 5 101... 1.+.----111.+.-.....1 0 0

Output: 75 34

13 12