Sub array Sum2

Let A = {a0, a1, a2, a3, ..., an-1} be an array. We define a recursive operation Op on array A as follows

```
Op(A) = Op(two(A)) + Op(one(A)) + Op(zero(A)) if n > 1
= A otherwise
```

Here, $zero(A) = \{a0, a3, a6, ...\}$ i.e. an array formed by elements whose indices are divisible by 3. Similarly, $one(A) = \{a1, a4, a7, a10, ...\}$ and $two(A) = \{a2, a5, a8, a11...\}$. Also, + is the concatenation operation.

For example, if $A = \{0, 1, 2, 3, 4, 5\}$. Then Op(A) will be calculated as

```
\begin{aligned} Op(A) &= Op(\{2, 5\}) + Op(\{1, 4\}) + Op(\{0, 3\}) \\ &= Op(\{\}) + Op(\{5\}) + Op(\{2\}) + Op(\{\}) + Op(\{4\}) + Op(\{1\}) + Op(\{\}) + Op(\{3\}) + Op(\{0\}) \\ &= \{5, 2, 4, 1, 3, 0\} \end{aligned}
```

We define an query on an array B as taking the sum of all elements bk where $i \le k \le j$ and $l \le bk \le r$.

We define $C = \{0, 1, 2, ..., n - 1\}$. So, you are given n and q queries and to have to perform q queries on B = Op(C)

Input

First line contains size n of array C. ($n \le 10^{15}$) -

Second line contains q, number of queries. ($q \le 10^5$) -

Next q lines contains four integers i, j, l, r. ($0 \le i < n$, $i \le j < n$, $0 \le l < n$, $l \le r < n$)

Output

You have to output q integers modulo 10⁹ + 7 corresponding to each query on a separate line.

Example

Input:

4 1 0301

Output:

1