Chiaki With Intervals (Easy)

Chiaki has a set \$A\$ of \$n\$ intervals, the \$i\$-th of them is \$[I_i, r_i]\$. She would like to know the number of such interval sets \$S \subset A\$: for every interval \$a \in A\$ which is not in \$S\$, there exists at least one interval \$b\$ in \$S\$ which has non-empty intersection with \$a\$. As this number may be very large, Chiaki is only interested in its remainder modulo \$(10^9+7)\$.

Interval $a\$ has intersection with interval $b\$ if there exists a real number $x\$ that $a \le x \le r$ as and $a \le x \le r$ b.

Input

There are multiple test cases. The first line of input contains an integer \$T\$ \$\$, indicating the number of test cases. For each test case:

The first line contains an integer \$n\$ (\$1 \le n \le 10^5\$) -- the number of intervals.

Each of the following n lines contains two integers l_i and r_i (\$1 \le $l_i < r_i$ \le 10^9\$) denoting the \$i\$-th interval.

It is guaranteed that for every \$1 $\le i \le j \le n$, \$|_i \ne |_j\$ or \$r_i \ne r_j\$ and that the number of distinct \$r_i\$ in each test case does not exceed \$15\$.

Output

For each test case, output an integer denoting the answer.

Example

Input:

2

3

12

3 4

56

3 1 4

2 4

3 4

Output:

1 7