Johnsons Algorithm

Johnson's algorithm solves the all-pairs shortest path problem in a weighted, directed graph.

Input

```
t [number of test graphs]

[description of each graph]
n [number of nodes, 1<=n<=100]
m [number of edges, m>=0]
[next the list of edges, one edge per line]
u v w [e(u,v) - edge from node u to node v with weight w]
    [1<=u<=n, 1<=v<=n, -1000<=w<=1000]
... [next edge]
[next graph]
...</pre>
```

Output

If the *i*-th test graph has negative weight cycles, then the answer should be:

```
graph i no [where 'i' is the number of the graph, 1 <= i <= t]
```

Otherwise you should output the following data:

```
[vector of function h(v)]
h_1 h_2 \dots h_{n+1}

[matrix d[u,v], the solution of the all-pairs shortest path problem]
d_{1,1} d_{1,2} \dots d_{1,n}
d_{2,1} d_{2,2} \dots d_{2,n}
\dots \dots \dots
d_{n,1} d_{n,2} \dots d_{n,n}

[if the path doesn't exist, you should output # instead]
```

Example

23-1

```
Input:
6
2
2
1 2 -2
2 1 1
6
8
1 2 8
1 6 6
6 2 3
```

```
36-2
65-2
542
3 4 3
4
4
121
232
3 4 3
4 1 0
2
0
1
0
2
2
1 2 -1
2 1 0
Output:
graph 1 no
graph 2 yes
0 0 -1 -3 -5 -3 0
087535
# 0 -1 -3 -5 -3
# 1 0 -2 -4 -2
###0##
###20#
#320-20
graph 3 yes
00000
0136
5025
3 4 0 3
0 1 3 0
graph 4 yes
000
0#
# 0
graph 5 yes
0 0
0
graph 6 no
```