KGSS - Maximum Sum

You are given a sequence A[1], A[2], ..., A[N] ( 0 ≤ A[i] ≤ 10^8 , 2 ≤ N ≤ 10^5 ). There are two types of operations and they are defined as follows:

Update:

This will be indicated in the input by a 'U' followed by space and then two integers i and x.

U i x, 1 ≤ i ≤ N, and x, 0 ≤ x ≤ 10^8.

This operation sets the value of A[i] to x.

Query:

This will be indicated in the input by a 'Q' followed by a single space and then two integers i and j.

Q x y, 1 ≤ x < y ≤ N.

You must find i and j such that x ≤ i, j ≤ y and i != j, such that the sum A[i]+A[j] is maximized. Print the sum A[i]+A[j].

Input

The first line of input consists of an integer N representing the length of the sequence. Next line consists of N space separated integers A[i]. Next line contains an integer Q, Q ≤ 10^5, representing the number of operations. Next Q lines contain the operations.

Output

Output the maximum sum mentioned above, in a separate line, for each Query.

Example

Input:
5
1 2 3 4 5
6
Q 2 4
Q 2 5
U 1 6
Q 1 5
U 1 7
Q 1 5

Output:
7
9
11
12

Warning: large Input/Output data, be careful with certain languages

Added by:Swarnaprakash
Date:2009-01-10
Time limit:1s
Source limit:50000B
Memory limit:1536MB
Cluster: Cube (Intel G860)
Languages:All except: ERL JS-RHINO NODEJS PERL6 VB.NET
Resource:Kurukshetra 09 OPC

hide comments
2022-06-13 23:04:13
Java Users, Please take a note!!!!
instead of using scanner or buffered reader,use FastReader class,otherwise this program will give TLE.
Here is the link,you can refer to fast reader class :
https://www.geeksforgeeks.org/fast-io-in-java-in-competitive-programming/
2021-11-09 23:12:52
i solve it usint sqrt decom , and i got AC , but this test case breaked my solution ( corner case when the size of block is equal 1 )
the correct answer is 3 not 8
1
5
2
U 1 3
Q 1 1


Last edit: 2021-11-09 23:15:01
2021-09-28 10:43:38
simple problem... best one for start learning segtree
2021-06-06 15:17:15
Good for begineers
2021-06-05 05:38:54
After some silly mistakes AC. Nice problem for segment tree beginners
2021-05-30 08:43:03
Fenwick Tree go go
2021-02-11 21:05:39
Accepting Java solution, I don't know it gives TLE with Scanner or not but FastReader is okay

Last edit: 2021-02-11 21:06:32
2021-01-22 21:47:48
Solved it using segment trees 2 different ways
2020-08-06 10:56:08
Aced finally..............................

Last edit: 2020-08-06 12:30:50
2020-08-04 12:34:34
accepted in one go
© Spoj.com. All Rights Reserved. Spoj uses Sphere Engine™ © by Sphere Research Labs.