Count Minimum Spanning Trees Your task is simple in this problem: count the number of **minimum spanning tree** (<u>Wikipedia</u>) in a simple undirected graph. The number of minimum spanning trees mean in how many ways you can select a subset of the edges of the graphs which forms a minimum spanning tree. ### Input The first line of input contains two integers \mathbf{N} (1 \leq \mathbf{N} \leq 100), \mathbf{M} (1 \leq \mathbf{M} \leq 1000). Nodes are labeled from 1 to \mathbf{N} . In the following \mathbf{M} lines, every line contains three integers $\mathbf{a_i}$, $\mathbf{b_i}$, $\mathbf{c_i}$, representing an undirected edge from node $\mathbf{a_i}$ to node $\mathbf{b_i}$, with weight $\mathbf{c_i}$. (1 \leq $\mathbf{a_i}$ \neq $\mathbf{b_i}$ \leq \mathbf{N} , 1 \leq $\mathbf{c_i}$ \leq 1,000,000,000). You can assume there is at most one edge between two nodes, and the graph described by input is connected. ## **Output** Print the answer % 31011. #### **Example** #### Input: 46 121 1 3 1 141 232 2 4 1 3 4 1 #### Output: 0