# **Necklace**

There are **N** points marked on a surface, pair  $(\mathbf{x_i}, \mathbf{y_i})$  is coordinates of a point number **i**. Let's call a *necklace* a set of **N** figures which fulfils the following rules.

- The figure #i consists of all such points  $(\mathbf{x}, \mathbf{y})$  that  $(\mathbf{x} \mathbf{x_i})^2 + (\mathbf{y} \mathbf{y_i})^2 \le \mathbf{r_i}^2$ , where  $\mathbf{r_i} \ge 0$ .
- Figures #i and #(i+1) intersect  $(1 \le i < N)$ .
- Figures #1 and #N intersect.
- All the rest pairs of figures do not intersect.

Write a program which takes points and constructs a necklace.

#### Input

First line of input contains an integer  $\mathbf{t}$  ( $1 \le \mathbf{t} \le 45$ ), equals to the number of testcases. Then descriptions of  $\mathbf{t}$  testcases follow.

The first line of the description contains one integer number  $\mathbf{N}$  ( $2 \le \mathbf{N} \le 100$ ). Each of the next  $\mathbf{N}$  lines contains two real numbers  $\mathbf{x_i}$ ,  $\mathbf{y_i}$  ( $-1000 \le \mathbf{x_i}$ ,  $\mathbf{y_i} \le 1000$ ), separated by one space. It is guaranteed that at least one necklace exists for each testcase.

### **Output**

For each testcase your program should output exactly **N** lines. A line **#i** should contain real number  $\mathbf{r_i}$  ( $0 \le \mathbf{r_i} < 10000$ ). To avoid potential accuracy problems, a checking program uses the following rules.

- Figures #i and #j definitely do not intersect if r<sub>i</sub> + r<sub>j</sub> ≤ d<sub>ij</sub> 10<sup>-5</sup>.
- Figures #i and #j definitely intersect if d<sub>ij</sub> + 10<sup>-5</sup> ≤ r<sub>i</sub> + r<sub>j</sub>.
- The case when  $d_{ij} 10^{-5} < r_i + r_j < d_{ij} + 10^{-5}$  is decided in favour of a contestant.
- $\mathbf{d_{ij}}$  equals  $sqrt((\mathbf{x_i} \mathbf{x_j})^2 + (\mathbf{y_i} \mathbf{y_j})^2)$  in the rules above.

# **Example**

## Input:

1 4

0 0

100

10 10

0 10

#### **Output:**

7

7

7

7