One Theorem, One Year

A number is **Almost-K-Prime** if it has exactly **K** prime numbers (not necessarily distinct) in its prime factorization. For example, $12 = 2 \cdot 2 \cdot 3$ is an Almost-3-Prime and $32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ is an Almost-5-Prime number. A number **X** is called **Almost-K-First-P-Prime** if it satisfies the following criterions:

- 1. X is an Almost-K-Prime and
- 2. X has **all and only** the first P ($P \le K$) primes in its prime factorization.

For example, if K=3 and P=2, the numbers 18 = 2 * 3 * 3 and 12 = 2 * 2 * 3 satisfy the above criterions. And 630 = 2 * 3 * 3 * 5 * 7 is an example of Almost-5-First-4-Prime.

For a given K and P, your task is to calculate the summation of $\Phi(X)$ for all integers X such that X is an Almost-K-First-P-Prime.

In mathematics $\Phi(X)$ means the number of relatively prime numbers with respect to X which are smaller than X. Two numbers are relatively prime if their GCD (Greatest Common Divisor) is 1. For example, $\Phi(12) = 4$, because the numbers that are relatively prime to 12 are: 1, 5, 7, 11.

Input

Input starts with an integer **T** (≤ **10000**), denoting the number of test cases.

Each case starts with a line containing two integers K (1 \leq K \leq 500) and P (1 \leq P \leq K).

Output

For each case, print the case number and the result modulo 100000007.

Example

Input:

3

32

54

99 45

Output:

Case 1: 10 Case 2: 816

Case 3: 49939643