Paying in Byteland

There are infinitely many coin denominations in the Byteland. They have values of 2^i for i=0,1,2,.... We will say that set of coins c1,c2,...,ck is perfect when it is possible to pay every amount of money between 0 and c1+...+ck using some of them (so $\{4,2,2,1\}$ is perfect while $\{8,1\}$ is not). The question is - is it always possible to change given sum n into a perfect set of coins? Of course it is possible;). Your task will be more complicated: for a sum n you should find minimal number of coins in its perfect representation.

Input

First line of input contains one integer $c \le 50$ - number of test cases. Then c lines follow, each of them consisting of exactly one integer $n \le 10^1000$.

Output

For each test case output minimal number of coins.

Example

Input:

5

507 29

8574

233

149

Output:

14

7

21

11

10