
Decode the Strings
Bruce Force has had an interesting idea how to encode strings. The following is the description
of how the encoding is done:

Let x1, x2 ... xn be the sequence of characters of the string to be encoded.

1. Choose an integer m and n pairwise distinct numbers p1,p2 ... pn from the set {1, 2 ... n} (a
permutation of the numbers 1 to n).

2. Repeat the following step m times.
3. For 1 ≤ i ≤ n set yi to xpi

, and then for 1 ≤ i ≤ n replace xi by yi.

For example, when we want to encode the string "hello", and we choose the value m = 3 and the
permutation 2, 3, 1, 5, 4, the data would be encoded in 3 steps: "hello" → "elhol" → "lhelo" →
"helol".

Bruce gives you the encoded strings, and the numbers m and p1 ... pn used to encode these
strings. He claims that because he used huge numbers m for encoding, you will need a lot of time
to decode the strings. Can you disprove this claim by quickly decoding the strings?

Input

The input contains several test cases. Each test case starts with a line containing two numbers n
and m (1 ≤ n ≤ 80, 1 ≤ m ≤ 109). The following line consists of n pairwise different numbers p1 ...
pn (1 ≤ pi ≤ n). The third line of each test case consists of exactly n characters, and represent the
encoded string. The last test case is followed by a line containing two zeros.

Output

For each test case, print one line with the decoded string.

Example

Input:
5 3
2 3 1 5 4
helol
16 804289384
13 10 2 7 8 1 16 12 15 6 5 14 3 4 11 9
scssoet tcaede n
8 12
5 3 4 2 1 8 6 7
encoded?
0 0

Output:
hello
second test case
encoded?


	Decode the Strings
	Input
	Output
	Example


