Period

For each prefix of a given string $\bf S$ with $\bf N$ characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each $\bf i$ ($2 <= \bf i <= \bf N$) we want to know the largest $\bf K > 1$ (if there is one) such that the prefix of $\bf S$ with length $\bf i$ can be written as $\bf A^{\bf K}$, that is $\bf A$ concatenated $\bf K$ times, for some string $\bf A$. Of course, we also want to know the period $\bf K$.

Input

The first line of the input file will contains only the number T ($1 \le T \le 10$) of the test cases.

Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S. The second line contains the string S.

Output

For each test case, output "Test case #" and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.

Example

Input:

2

3

aaa

12 aabaabaabaab

Output:

Test case #1

22

33

Test case #2

22

62

93

12 4