The Least Number

You are given n symbols a_1 , a_2 ,..., a_n . You are told that there is a total ordering of the symbols. That is, there is a permutation [P1, P2,..., Pn] of [1,2,...,n] such that $a_{P1} < a_{P2} < ... < a_{Pn}$. You are trying to figure out the order by doing comparisons. The process you follow for determining the order is as follows:

- Compare [a₁, a₂]
- Compare [a₂, a₃], [a₁, a₃]
- Compare [a₃, a₄], [a₂, a₄], [a₁, a₄]
-
-
- Compare [a_{n-1},a_n], [a_{n-2},a_n],..., [a₁, a_n]

Note that you compare in the order specified. That is you compare $[a_2, a_3]$, then and only then do you compare $[a_1, a_3]$.

Definition of Compare $[a_i, a_i]$ (i < j)

- If Compare $[a_i, a_i] = 1$, it means $a_i > a_i$. If Compare $[a_i, a_i] = -1$, it means $a_i < a_i$.
- Compare is consistent. Suppose, that you queried $[a_2, a_6]$ and it was already established $[a_2 < a_6]$ (because for example $a_2 < a_5$ and $a_5 < a_6$ since both of these comparisons happen earlier), then $[a_2, a_6]$ returns -1.
- If no relationship is known between a_i and a_j , Compare[a_i , a_j] = 1 with probability 1/2 and -1 with probability 1/2

Your task is to output the probability that a_1 is the smallest element of the final ordering so obtained.

Input

First line contains T, the number of test cases

Each of the next T lines contains one number each, $\mathbf{n}(1 \le n \le 1000)$.

Output

Output T lines in total, one per test case: Probability that a_1 is indeed the smallest element at the end of the comparisons. Your output will be judged correct if it differs by no more than 10^{-9} to the reference answer.

Example

Input:

3

2
_

3

Output:

1

0.500

0.3750000

Explanation:

n = 1 is trivial

For n=2, only comparison is $[a_1,\ a_2]$. a1 is lower with probability 1/2.

For n = 3, a1 is not the least element if either $(a_1 > a_2)$ or $(a_1 < a_2 \text{ and } a_3 < a_2 \text{ and } a_3 < a_1)$.

So, probability that a_1 is not the least element = 1/2 + 1/8 = 5/8. Probability that a_1 is the least = 3/8 = 0.375.