
Road net
A diskette was enclosed to a road map. The diskette contains the table of the shortest ways
(distances) between each pair of towns on the map. All the roads are two-way. The location of
towns on the map has the following interesting property: if the length of the shortest way from
town A to town B equals the sum of the lengths of the shortest ways from A to C and C to B then
town C lies on (certain) shortest way from A to B. We say that towns A and B are neighbouring
towns if there is no town C such that the length of the shortest way from A to B equals the sum of
the lengths of the shortest ways from A to C and C to B. Find all the pairs of neighbouring towns.

Example

For the table of distances:

 A B C
A 0 1 2

B 1 0 3

C 2 3 0

the neighbouring towns are A, B and A, C.

Task

Write a program that for each test case:

reads the table of distances from standard input;
finds all the pairs of neighbouring towns;
writes the result to standard output.

Input

The number of test cases t is in the first line of input, then t test cases follow separated by an
empty line.

In the first line of each test case there is an integer n, 1 ≤ n ≤ 200, which equals the number of
towns on the map. Towns are numbered from 1 to n.

The table of distances is written in the following n lines. In the (i+1)-th line, 1 ≤ i ≤ n, there are n
non-negative integers not greater than 200, separated by single spaces. The j-th integer is the
distance between towns i and j.

Output

For each test case your program should write all the pairs of the neighbouring towns (i.e. their
numbers). There should be one pair in each line. Each pair can appear only once. The numbers
in each pair should be given in increasing order. Pairs should be ordered so that if the pair (a, b)
precedes the pair (c, d) then a < c or (a = c and b < d).

Consequent test cases should by separated by an empty line.

Example

Input:
1
3
0 1 2
1 0 3
2 3 0

Output:
1 2
1 3

	Road net
	Example
	Task
	Input
	Output
	Example

