Simple Numbers Conversion

Every integer number *n* is represented in positional number system of base *r* by a sequence of digits $0 \le d_i < r$, so the value is equal to:

 $n = d0 + r^* d1 + r^{2*} d2 + r^{3*} d3 + \dots$

Your task is to convert a given number in *r*-base representation into *s*-base representation, for example: decimal 231 into binary 11100111. Assume that $r \le 36$ and the digits are 0,1,2,3,4,5,6,7,8,9, *A*, *B*, *C*, *D*, *E*, *F*, *G*, *H*, *I*, *J*, *K*, *L*, *M*, *N*, *O*, *P*, *Q*, *R*, *S*, *T*, *U*, *V*, *W*, *X*, *Y*, *Z*.

Input

N [the number of series \leq 1000] *n r s* [$n \leq 10^{1000}$, *r*,*s* \leq 36]

Output

n [s-base representation of number n]

Text grouped in [] does not appear in the input and output file.

Example

Input:

231 10 2 ABC 15 10 XYZ 36 2

Output:

11100111 2427 1010101111111011

Test cases

There are five categories of the input data:

- Test case 1: (1 pt), r = 2 and s = 10, or conversely, $n \le 10^9$, N = 100,
- Test case 2: (1 pt), $2 \le r, s \le 10, n \le 10^9, N = 1000$,
- Test case 3: (1 pt), $2 \le r, s \le 36$, $n \le 10^9$, N = 1000,
- Test case 4: (3 pts), $2 \le r, s \le 10$, $n \le 10^{1000}$, N = 1000,
- Test case 5: (4 pts), $2 \le r, s \le 36$, $n \le 10^{1000}$, N = 1000.