Longest Common Subsequence

Wersja polska

English version

For a given two words $\mathbf{x} = x_1 x_2 \dots x_n$ and $\mathbf{y} = y_1 y_2 \dots y_m$ find the longest common subsequence, i.e. $\mathbf{z} = z_1 z_2 \dots z_k$ such that every two consecutive elements of \mathbf{z} are equal to some two elements of \mathbf{x} : \mathbf{x}_a , \mathbf{x}_b , and \mathbf{y} : \mathbf{y}_c , \mathbf{y}_d where a < b and c < d. Assume, that elements of words are letters 'a' - 'z' and m,n < 1000.

Input

```
N [the number of series <= 1000]
n x
m y
...
```

Output

```
case 1 Y [or N when no answer to this case] d [the length of the lcs] z_j p q [position of z_j in \mathbf{x} and in \mathbf{y}, respectively] ...
```

Text grouped in [] does not appear in the input and output file.

Example

Input:

3

5 ddacc

3 cac

7 cbbccbc

4 aaca

4 cbeb

5 fdceb

Output:

case 1 Y

2

a 3 2

c 43

case 2 N

case 3 Y

3

c 13

e 34

b 4 5

Score

2