Con-Junctions

The city of **Y-O** is a network of two-way streets and junctions with the following properties:

- 1. There is no more than one street between each pair of junctions.
- 2. Every junction is connected to every other junction either directly via a street or through other junctions by a unique path.
- 3. When a light is placed at a junction, all the streets meeting at this junction are also lit.

A valid lighting is a set of junctions such that if lights were placed at these, all the streets would be lit. An optimal lighting is a valid lighting such that it contains the least number of junctions.

The task is divided into two subtasks:

- 1. Find the number of lights in an optimal lighting.
- 2. Find the total number of such optimal lightings in the city.

Input

- The first line of the input contains a positive integer **t** <= **20**, denoting the number of test cases.
- The description of the test cases follows one after the other.
- Network Description:
 - The first line of description of a network consists of a positive integer n <= 100010
 denoting the number of junctions in the network.
 - Each junction is numbered with a unique integer between **1** and **n**.
 - The following n-1 lines contain a pair of integers u v (1 <= u,v <= n) separated by a single space denoting that there is a street between junction u and junction v.

Output

The output must consist of t lines, the k^{th} line corresponding to the k^{th} network; (1 <= t <= t). The t^{th} line must contain two integers separated by a single space. The first integer on the t^{th} line must be the number of junctions in an optimal lighting of network t^{th} . The second integer must be t^{th} 10007, which is the remainder left by the number of optimal lightings when divided by 10007.

Example

Input:

2

4

12

23

3 4

3 12

13

Output:

23

1 1