
When (You Believe)
It's said: there can be miracles, when you believe. The following programming language shows
the power of "when". It has a very simple (case insensitive) grammar, shown below:

PROGRAM := WHEN | PROGRAM WHEN
WHEN := 'when ' EXPRESSION <ENTER> STATEMENTS 'end when' <ENTER>
STATEMENTS := STATEMENT | STATEMENTS STATEMENT
STATEMENT := PRINT | SET
PRINT := 'print ' EXPRESSION_LIST <ENTER>
SET := 'set ' ASSIGNMENT_LIST <ENTER>
EXPRESSION_LIST := EXPRESSION | EXPRESSION_LIST ',' EXPRESSION
ASSIGNMENT_LIST := ASSIGNMENT | ASSIGNMENT_LIST ',' ASSIGNMENT
ASSIGNMENT := VARIABLE '=' EXPRESSION
EXPRESSION := '(' EXPRESSION OP EXPRESSION ')' | VARIABLE | NUMBER
OP := '<' | '+' | '-' | 'and' | 'or' | 'xor'
VARIABLE := '$' NOT_DOLLAR_STRING '$'
NUMBER := DIGIT | NUMBER DIGIT
DIGIT := '0' | .. | '9'
NOT_DOLLAR_STRING := any sequence of printable characters (including blanks)
 that does not contain a $ symbol.

In the above, any string enclosed in single quotes are to be treated literally. <ENTER> is the end
of line.

In words, Spaces are allowed before or after any literal except inside a number. Spaces are
allowed in variable names, and each non-empty sequence of spaces is treated as a single
underscore, so the following refer to the same variable:

$Remote Switch#1$
$Remote_Switch#1$
$Remote switch#1$

All numbers appearing in the program will be integers between 0 and 1000000000, inclusive. All
variable and literal values are integers between -1000000000 and 1000000000, inclusive. All
variables are global and initially zero. The programs you will be tested on will never have an
EXPRESSION that evaluates to a value outside of this range. The logical operators evaluate to 0 for
false and 1 for true, and treat any nonzero value as true.

Running the program amounts to executing all the active when clauses until none are active.
More specifically, the active list of when clauses is initially empty, then the following steps are
repeated:

In the order they appear in the program, the conditions of all when clauses that are not
currently active are evaluated. If true, the clause is added to the end of the active list, with
its first statement marked as "ready". Each active when clause has one "ready" statement.
If the active list is empty after this step, the program terminates.
The "ready" statement from the "current" when clause (initially the first clause in the active
list) is executed.
The statement marked as "ready" is advanced, removing the when clause from the active

list if this is the last statement in the "current" when clause.
The when clause marked as "current" is advanced, cycling to the beginning of the active list
if the end is reached.

In other words, inactive when conditions are evaluated to determine if these clauses are added to
the active list. Then one statement (set or print) is executed from the current active when clause. If
this is the last statement in that clause, it is removed from the active list. One the next iteration,
one statement is executed from the next active when clause, etc.

A set statement executes all the assignments concurrently, so that

set x=y,y=x

swaps the values of x and y. The same variable cannot appear twice on the left hand part of
the same set statement (so set x=1,x=2 is illegal).

A print statement evaluates and prints the given expressions in the output, separated by commas
and followed by a new line. So

print 1,(2+3)

results in the line

1,5

in the output.

Input

The input consists of a single syntactically correct program. You may assume that the program
will not execute more than 100000 set statements and 100000 print statements.

Output

Print the output produced by executing the given program. Both the input and output file will not
exceed 100KB.

Example

Input:
When ($Mr. Bill$<5)
 Set $mr._bill$=($mr. bill$+1),Y=(Y+10)
End When
When ($mr. Bill$<10)
 Set $MR. BILL$=($mr. bill$+1)
 Print $mr. bill$,Y
End When

Output:
3,20
6,40
7,40

8,40
9,40
10,40

	When (You Believe)
	Input
	Output
	Example

