2D arrays with XOR property

We consider 2D arrays A, (0,0)-indexed, shape $N \times M$. With $0 \le i < N$ and $0 \le j < M$, we have $0 < A_{i,j} \le N \times M$.

Our interest will be to count those arrays that have the two properties :

- Arrays A are composed with all numbers from 1 to N × M.
 i.e. we have (i, j) ≠ (k, l) ⇒ A_{i,j} ≠ A_{k,l}
- $(i \oplus j) > (k \oplus l) \implies A_{i,j} > A_{k,l}$, where \oplus denotes bitwise XOR.

Input

The first line contains *T*, the number of test cases, and *P* a prime number.

Each of the next T lines contains N and M, the shape of the arrays A.

Output

For each test case, print the number of arrays A with the given properties. As the result may be large, the answer **modulo** P is required.

Example

Input:

2 1000000007 2 2 997 799

Output:

4 828630475

For the first case, the 4 possible 2x2 arrays are : $\binom{42}{7}$, $\binom{32}{7}$, $\binom{41}{7}$, and $\binom{31}{7}$.

Constraints

$$1 \le T \le 10^4$$
,
 $10^9 < P < 2 \times 10^9$, a prime number,
 $1 \le N \le 10^9$,
 $1 \le M \le 10^5$.

Constraints allow a small kB of unoptimized PY3.4 code to get AC in the third of the TL. **Have fun.**